As of August 2020 the site you are on (wiki.newae.com) is deprecated, and content is now at rtfm.newae.com. |
Difference between revisions of "AES-CCM Attack"
(→Example Bootloader) |
|||
Line 1: | Line 1: | ||
WARNING: This page under construction! | WARNING: This page under construction! | ||
− | The following is an overview of the AES-CMM attack done by Eyal Ronen, detailed in his paper [http://iotworm.eyalro.net/ IoT Goes Nuclear: Creating a ZigBee Chain Reaction]. If using this attack please '''do not cite this page''', instead cite the | + | The following is an overview of the AES-CMM attack done by Eyal Ronen, detailed in his draft/limited release paper [http://iotworm.eyalro.net/ IoT Goes Nuclear: Creating a ZigBee Chain Reaction]. If using this attack please '''do not cite this page''', instead cite the research paper only. The paper is currently a draft so there is no proceedings information etc as it has not yet been presented anywhere. |
This page is presented as an example of using Python/ChipWhisperer to perform attacks against the AES-CCM cipher, without needing to do a more complex attack against AES-CTR mode. | This page is presented as an example of using Python/ChipWhisperer to perform attacks against the AES-CCM cipher, without needing to do a more complex attack against AES-CTR mode. |
Revision as of 14:34, 2 November 2016
WARNING: This page under construction!
The following is an overview of the AES-CMM attack done by Eyal Ronen, detailed in his draft/limited release paper IoT Goes Nuclear: Creating a ZigBee Chain Reaction. If using this attack please do not cite this page, instead cite the research paper only. The paper is currently a draft so there is no proceedings information etc as it has not yet been presented anywhere.
This page is presented as an example of using Python/ChipWhisperer to perform attacks against the AES-CCM cipher, without needing to do a more complex attack against AES-CTR mode.
Contents
AES-CCM Overview
AES-CCM provides both encryption and authentication using the AES block cipher. This is a widely used mode since it requires only a single cryptographic primitive. That primitive is used in two different modes: CBC and CTR mode. The difference is explained below:
Cipher Block Chaining (CBC): The plaintext is XORed with the previous ciphertext before being encrypted. There is no ciphertext before the first plaintext, so a randomly chosen initialization vector (IV) is used instead:
Counter (CTR): An incrementing counter is encrypted to produce a sequence of blocks, which are XORed with the plaintexts to produce the ciphertexts:
Background on Attack
The following uses the notation from IoT Goes Nuclear: Creating a ZigBee Chain Reaction.
Assume first the basic AES-ECB cipher is $CT = E_k(PT)$, where we are encrypting a block with secret key $k$.
AES-CCM combines AES-CTR mode and AES-CBC mode as mentioned. We could consider AES-CTR to be performing the following operation:
Performing Attack
Building Example
Collecting Traces
Step #1: AES-CBC MAC Block #1
Step #2: AES-CBC MAC Block #2
Step #3: Recovery of AES-CTR Nonce
Step #4: Recovery of AES-CBC I.V.
Step #5: AES-CTR Pad
Example Bootloader
The example bootloader has a simplified AES-CCM implementation (NB: do NOT use this as a reference for a good implementation!). It accomplishes the basic goals only of having:
- Header data that is authenticated but not encrypted
- An encrypted MAC tag
- A bunch of encrypted firmware blocks
Each block sent to the bootloader is 19 bytes long. The first byte indicates the type - header, auth tag, or data. If a new 'header' message is received it will abort any ongoing processing of existing data and restart the bootloader process.
All messages share this feature:
- CRC-16: A 16-bit checksum using the CRC-CCITT polynomial (0x1021). The LSB of the CRC is sent first, followed by the MSB. The bootloader will reply over the serial port, describing whether or not this CRC check was valid.
Header Frame
-
0x01
: 1 byte of fixed header - Header Info: 14 bytes of "header" data which could be version or other such stuff.
- Length: Number of encrypted data frames (NOT including the auth-tag frame) that will follow.
Note the 16 bytes of the header info + length are fed into the AES-CBC algorithm as part of the auth-tag generation. That is this data is authenticated but not encrypted.
+------+------+------+------+ .... +------+------+------+------+ | 0x01 | Header Info (14 bytes)| Length | CRC-16 | +------+------+------+------+ .... +------+------+------+------+
Auth Tag Frame
-
0x02
: 1 byte of fixed header - Auth-Tag: The expected output of the AES-CBC algorithm after processing the authenticated only data + decrypted data frames. This is then encrypted in AES-CTR mode with the CTR set to 0.
|<----- Encrypted block (16 bytes) ------>| | AES-CTR Encryption with CTR=0 | | | +------+------+------+------+ .... +------+------+------+------+ | 0x02 | Auth-Tag (encrypted MAC) | CRC-16 | +------+------+------+------+ .... +------+------+------+------+
Data block frame
-
0x03
: 1 byte of fixed header - Encrypted Data: Data encrypted in AES-CTR mode, with the CTR starting at 1 and incrementing.
|<----- Encrypted block (16 bytes) ------>| | AES-CTR Encryption with CTR=1,2,3..N | | | +------+------+------+------+ .... +------+------+------+------+ | 0x03 | Data (16 Bytes) | CRC-16 | +------+------+------+------+ .... +------+------+------+------+
The bootloader responds to each command with a single byte indicating if the CRC-16 was OK or not:
+------+ CRC-OK: | 0xA1 | +------+ +------+ CRC Failed: | 0xA4 | +------+
Once ALL messages are received, the bootloader will respond with a signature OK or not message:
+------+ Sig-OK: | 0xB1 | +------+ +------+ Sig Failed: | 0xB4 | +------+
Note details of the AES-CTR nonce, AES-CBC I.V., and key are stored in the firmware itself. In this example they are not downloaded as part of the encrypted firmware file.