Making Scripts

For the older V3.x tools, see V3:Making_Scripts

Scripting with ChipWhisperer as a python module

When used without the GUI, the 4.0 API removes much of the high level abstractions so you can have more control over the capture process. It also answers questions like--when I capture a trace in what order are things happening? The following example scripts will give you a starting point when scripting with the ChipWhisperer tool. All these examples on this page can be found in their home chipwhisperer/software/scripting-examples.

Perform Some Traces during AES encryption and get the results as Numpy array

This script is an example of using the chipwhisperer module for capturing traces during AES encryption. Make sure to have the correct firmware loaded on the target. These traces are then saved and loaded later for analysis.

XMEGA Target

from __future__ import division, print_function

import time
import os

import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from tqdm import tqdm

import chipwhisperer as cw
from chipwhisperer.capture.acq_patterns.basic import AcqKeyTextPattern_Basic
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
from chipwhisperer.capture.api.programmers import XMEGAProgrammer

scope = cw.scope()
target = cw.target(scope)

# setup scope parameters
scope.gain.gain = 45
scope.adc.samples = 3000
scope.adc.offset = 1250
scope.adc.basic_mode = "rising_edge"
scope.clock.clkgen_freq = 7370000
scope.clock.adc_src = "clkgen_x4"
scope.trigger.triggers = "tio4"
scope.io.tio1 = "serial_rx"
scope.io.tio2 = "serial_tx"
scope.io.hs2 = "clkgen"

# program the target
programmer = XMEGAProgrammer()
programmer.scope = scope
programmer._logging = None
programmer.find()
programmer.erase()
aes_firmware_dir = os.path.join(FIRMWARE_DIR, 'simpleserial-aes')
aes_hex = os.path.join(aes_firmware_dir, r"simpleserial-aes-CW303.hex")
programmer.program(aes_hex, memtype="flash", verify=True)
programmer.close()

ktp = AcqKeyTextPattern_Basic(target=target)

traces = []
textin = []
keys = []
N = 50  # Number of traces
target.init()
for i in tqdm(range(N), desc='Capturing traces'):
    # run aux stuff that should come before trace here

    key, text = ktp.newPair()  # manual creation of a key, text pair can be substituted here
    textin.append(text)
    keys.append(key)

    target.reinit()

    target.setModeEncrypt()  # only does something for targets that support it
    target.loadEncryptionKey(key)
    target.loadInput(text)

    # run aux stuff that should run before the scope arms here

    scope.arm()

    # run aux stuff that should run after the scope arms here

    target.go()
    timeout = 50
    # wait for target to finish
    while target.isDone() is False and timeout:
        timeout -= 1
        time.sleep(0.01)

    try:
        ret = scope.capture()
        if ret:
            print('Timeout happened during acquisition')
    except IOError as e:
        print('IOError: %s' % str(e))

    # run aux stuff that should happen after trace here
    _ = target.readOutput()  # clears the response from the serial port
    traces.append(scope.getLastTrace())
trace_array = np.asarray(traces)  # if you prefer to work with numpy array for number crunching
textin_array = np.asarray(textin)
known_keys = np.asarray(keys)  # for fixed key, these keys are all the same

now = datetime.now()
fmt_string = '{:02}{:02}_{}.npy'
trace_file_path = fmt_string.format(now.hour, now.minute, "traces")
textin_file_path = fmt_string.format(now.hour, now.minute, "textins")
keys_file_path = fmt_string.format(now.hour, now.minute, "keys")

print('Saving results to {},{} and {}...'.format(trace_file_path, textin_file_path, keys_file_path), end='')
# save to a files for later processing
np.save(trace_file_path, trace_array)
np.save(textin_file_path, textin_array)
np.save(keys_file_path, known_keys)
print('Done')

# uncomment plt.show() to show an example trace
plt.plot(traces[0])
#plt.show()

# cleanup the connection to the target and scope
scope.dis()
target.dis()

STM32F3 Target

from __future__ import division, print_function

import time
import os

import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from tqdm import tqdm

import chipwhisperer as cw
from chipwhisperer.capture.acq_patterns.basic import AcqKeyTextPattern_Basic
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
from chipwhisperer.capture.api.programmers import STM32FProgrammer

scope = cw.scope()
target = cw.target(scope)

# setup scope parameters
scope.gain.gain = 45
scope.adc.samples = 5000
scope.adc.offset = 0
scope.adc.basic_mode = "rising_edge"
scope.clock.clkgen_freq = 7370000
scope.clock.adc_src = "clkgen_x4"
scope.trigger.triggers = "tio4"
scope.io.tio1 = "serial_rx"
scope.io.tio2 = "serial_tx"
scope.io.hs2 = "clkgen"

# program the target
programmer = STM32FProgrammer()
programmer.scope = scope
programmer._logging = None
programmer.open()
programmer.find()
programmer.erase()
aes_firmware_dir = os.path.join(FIRMWARE_DIR, 'simpleserial-aes')
aes_hex = os.path.join(aes_firmware_dir, r"simpleserial-aes-CW308_STM32F3.hex")
programmer.program(aes_hex, memtype="flash", verify=True)
programmer.close()

ktp = AcqKeyTextPattern_Basic(target=target)

traces = []
textin = []
keys = []
N = 50  # Number of traces
target.init()
for i in tqdm(range(N), desc='Capturing traces'):
    # run aux stuff that should come before trace here

    key, text = ktp.newPair()  # manual creation of a key, text pair can be substituted here
    textin.append(text)
    keys.append(key)

    target.reinit()

    target.setModeEncrypt()  # only does something for targets that support it
    target.loadEncryptionKey(key)
    target.loadInput(text)

    # run aux stuff that should run before the scope arms here

    scope.arm()

    # run aux stuff that should run after the scope arms here

    target.go()
    timeout = 50
    # wait for target to finish
    while target.isDone() is False and timeout:
        timeout -= 1
        time.sleep(0.01)

    try:
        ret = scope.capture()
        if ret:
            print('Timeout happened during acquisition')
    except IOError as e:
        print('IOError: %s' % str(e))

    # run aux stuff that should happen after trace here

    _ = target.readOutput() # throw out the target response
    traces.append(scope.getLastTrace())
trace_array = np.asarray(traces)  # if you prefer to work with numpy array for number crunching
textin_array = np.asarray(textin)
known_keys = np.asarray(keys)  # for fixed key, these keys are all the same

now = datetime.now()
fmt_string = '{:02}{:02}_{}.npy'
trace_file_path = fmt_string.format(now.hour, now.minute, "traces")
textin_file_path = fmt_string.format(now.hour, now.minute, "textins")
keys_file_path = fmt_string.format(now.hour, now.minute, "keys")

print('Saving results to {},{} and {}...'.format(trace_file_path, textin_file_path, keys_file_path), end='')
# save to a files for later processing
np.save(trace_file_path, trace_array)
np.save(textin_file_path, textin_array)
np.save(keys_file_path, known_keys)
print('Done')

# show an example trace
plt.plot(traces[0])
plt.show()

# cleanup the connection to the target and scope
scope.dis()
target.dis()

Manually breaking AES encryption with your recorded traces (As much as scripting is manual)

Using the saved traces of the AES encryption you can now break the sub-keys of the encryption key. This script is covered in more detail in Tutorial B6.

from __future__ import division, print_function

import numpy as np
from tqdm import tqdm

HW = [bin(n).count("1") for n in range(0, 256)]

sbox = (
    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16)


def intermediate(pt, keyguess):
    return sbox[pt ^ keyguess]

# put the actual file names in here
keys = np.load('1147_keys.npy')
textins = np.load('1147_textins.npy')
traces = np.load('1147_traces.npy')

knownkey = keys[0] # for fixed key they are all the same
pt = textins
numtraces = np.shape(traces)[0]
numpoint = np.shape(traces)[1]

bestguess = [0] * 16
pge = [256] * 16
for bnum in tqdm(range(0, 16), desc='Attacking subkeys'):
    cpaoutput = [0] * 256
    maxcpa = [0] * 256
    for kguess in range(0, 256):

        # Initialize arrays & variables to zero
        sumnum = np.zeros(numpoint)
        sumden1 = np.zeros(numpoint)
        sumden2 = np.zeros(numpoint)

        hyp = np.zeros(numtraces)
        for tnum in range(0, numtraces):
            hyp[tnum] = HW[intermediate(pt[tnum][bnum], kguess)]

        # Mean of hypothesis
        meanh = np.mean(hyp, dtype=np.float64)

        # Mean of all points in trace
        meant = np.mean(traces, axis=0, dtype=np.float64)

        # For each trace, do the following
        for tnum in range(0, numtraces):
            hdiff = (hyp[tnum] - meanh)
            tdiff = traces[tnum, :] - meant

            sumnum = sumnum + (hdiff * tdiff)
            sumden1 = sumden1 + hdiff * hdiff
            sumden2 = sumden2 + tdiff * tdiff

        cpaoutput[kguess] = sumnum / np.sqrt(sumden1 * sumden2)
        maxcpa[kguess] = max(abs(cpaoutput[kguess]))

    bestguess[bnum] = np.argmax(maxcpa)

    cparefs = np.argsort(maxcpa)[::-1]

    # Find PGE
    pge[bnum] = list(cparefs).index(knownkey[bnum])

print("Best Key Guess: ", end="")
for b in bestguess: print("%02x " % b, end="")

print("")
print("PGE: ", end="")
for b in pge: print("%02d " % b, end="")

Exploring glitches

This script shows an example of using the ChipWhisperer tool for performing clock glitch attacks on a target executing code. This script has similar functionality of the glitch explorer in the GUI but exposes more the insides of the ChipWhisperer tool. This script varies the offset and the width percentage of the clock glitch applied to the target during code execution. More details about clock glitching can be found in Tutorial A2

XMEGA Target

from __future__ import print_function, division

import time
import logging
import os
from collections import namedtuple
import csv

import numpy as np

import chipwhisperer as cw
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
from chipwhisperer.capture.api.programmers import XMEGAProgrammer
#from scripting_utils import GlitchResultsDisplay

logging.basicConfig(level=logging.WARN)
scope = cw.scope()
target = cw.target(scope)

# setup parameters needed for glitch the XMEGA
scope.glitch.clk_src = 'clkgen'

scope.gain.gain = 45
scope.adc.samples = 3000
scope.adc.offset = 0
scope.adc.basic_mode = "rising_edge"
scope.clock.clkgen_freq = 7370000
scope.clock.adc_src = "clkgen_x4"
scope.trigger.triggers = "tio4"
scope.io.tio1 = "serial_rx"
scope.io.tio2 = "serial_tx"
scope.io.hs2 = "glitch"

target.go_cmd = ""
target.key_cmd = ""

# program the XMEGA with the built hex file
programmer = XMEGAProgrammer()
programmer.scope = scope
programmer._logging = None
programmer.find()
programmer.erase()
glitch_simple_firmware_dir = os.path.join(FIRMWARE_DIR, 'glitch-simple')
glitch_simple_hex = os.path.join(glitch_simple_firmware_dir, r"glitchsimple-CW303.hex")
programmer.program(glitch_simple_hex, memtype="flash", verify=True)
programmer.close()

# format output table
headers = ['target output', 'width', 'offset', 'success']
#glitch_display = GlitchResultsDisplay(headers)

# set glitch parameters
# trigger glitches with external trigger
scope.glitch.trigger_src = 'ext_single'
scope.glitch.repeat = 105

traces = []
outputs = []
widths = []
offsets = []

# named tuples to make it easier to change the scope of the test
Range = namedtuple('Range', ['min', 'max', 'step'])
width_range = Range(-10, 10, 4)
offset_range = Range(-10, 10, 4)

# glitch cycle
scope.glitch.width = width_range.min
open('glitch_out.csv', 'w').close()
f = open('glitch_out.csv', 'ab')
writer = csv.writer(f)
target.init()
while scope.glitch.width < width_range.max:
    scope.glitch.offset = offset_range.min
    while scope.glitch.offset < offset_range.max:
        # call before trace things here

        # flush the garbage from the computer's target read buffer
        target.ser.flush()

        # target enters reset mode
        scope.io.pdic = 'low'

        # run aux stuff that should run before the scope arms here

        scope.arm()

        # run aux stuff that should run after the scope arms here

        # target exits reset mode
        scope.io.pdic = 'high'

        timeout = 50
        # wait for target to finish
        while target.isDone() is False and timeout:
            timeout -= 1
            time.sleep(0.01)

        try:
            ret = scope.capture()
            if ret:
                logging.warning('Timeout happened during acquisition')
        except IOError as e:
            logging.error('IOError: %s' % str(e))

        # get the results from the scope
        trace = scope.getLastTrace()
        # read from the targets buffer
        output = target.ser.read(32, timeout=10)
        traces.append(trace)
        outputs.append(output)
        widths.append(scope.glitch.width)
        offsets.append(scope.glitch.width)

        # for table display purposes
        success = '1234' in repr(output) # check for glitch success (depends on targets active firmware)
        data = [repr(output), scope.glitch.width, scope.glitch.offset, success]
        #glitch_display.add_data(data)
        writer.writerow(data)

        # run aux stuff that should happen after trace here
        scope.glitch.offset += offset_range.step
    scope.glitch.width += width_range.step
f.close()
traces = np.asarray(traces)
# the rest of the data is available with the outputs, widths, and offsets lists
#glitch_display.display_table()
print('Done')

# clean up the connection to the scope and target
scope.dis()
target.dis()

STM32F3 Target

from __future__ import print_function, division

import time
import logging
import os
from collections import namedtuple
import csv

import numpy as np

import chipwhisperer as cw
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
from chipwhisperer.capture.api.programmers import STM32FProgrammer
from scripting_utils import GlitchResultsDisplay

logging.basicConfig(level=logging.WARN)
scope = cw.scope()
target = cw.target(scope)

# setup parameters needed for glitch the stm32f
scope.glitch.clk_src = 'clkgen'

scope.gain.gain = 45
scope.adc.samples = 5000
scope.adc.offset = 0
scope.adc.basic_mode = "rising_edge"
scope.clock.clkgen_freq = 7370000
scope.clock.adc_src = "clkgen_x4"
scope.trigger.triggers = "tio4"
scope.io.tio1 = "serial_rx"
scope.io.tio2 = "serial_tx"
scope.io.hs2 = "glitch"

target.go_cmd = ""
target.key_cmd = ""

# program the stm32f with the built hex file
programmer = STM32FProgrammer()
programmer.scope = scope
programmer._logging = None
programmer.open()
programmer.find()
programmer.erase()
glitch_simple_firmware_dir = os.path.join(FIRMWARE_DIR, 'glitch-simple')
glitch_simple_hex = os.path.join(glitch_simple_firmware_dir, r"glitchsimple-CW308_STM32F3.hex")
programmer.program(glitch_simple_hex, memtype="flash", verify=True)
programmer.close()

# format output table
headers = ['target output', 'width', 'offset', 'success']
glitch_display = GlitchResultsDisplay(headers)

# set glitch parameters
# trigger glitches with external trigger
scope.glitch.trigger_src = 'ext_single'
scope.glitch.repeat = 105

traces = []
outputs = []
widths = []
offsets = []

# named tuples to make it easier to change the scope of the test
Range = namedtuple('Range', ['min', 'max', 'step'])
width_range = Range(-40, 40, 0.39*5)
offset_range = Range(-40, 40, 0.39*5)

# glitch cycle
scope.glitch.width = width_range.min
open('glitch_out.csv', 'w').close()
f = open('glitch_out.csv', 'ab')
writer = csv.writer(f)
target.init()
while scope.glitch.width < width_range.max:
    scope.glitch.offset = offset_range.min
    while scope.glitch.offset < offset_range.max:
        # call before trace things here

        # flush the garbage from the computer's target read buffer
        target.ser.flush()

        # run aux stuff that should run before the scope arms here

        # target enters reset state
        scope.io.nrst = 'low'

        scope.arm()

        # run aux stuff that should run after the scope arms here

        # target exits reset state and starts execution
        scope.io.nrst = 'high'

        timeout = 50
        # wait for target to finish
        while target.isDone() is False and timeout:
            timeout -= 1
            time.sleep(0.01)

        try:
            ret = scope.capture()
            if ret:
                logging.warning('Timeout happened during acquisition')
        except IOError as e:
            logging.error('IOError: %s' % str(e))

        # get the results from the scope
        trace = scope.getLastTrace()
        # read from the targets buffer
        output = target.ser.read(32, timeout=100)
        traces.append(trace)
        outputs.append(output)
        widths.append(scope.glitch.width)
        offsets.append(scope.glitch.width)

        # for table display purposes
        success = '1234' in repr(output) # check for glitch success (depends on targets active firmware)
        data = [repr(output), scope.glitch.width, scope.glitch.offset, success]
        glitch_display.add_data(data)
        writer.writerow(data)

        # run aux stuff that should happen after trace here
        scope.glitch.offset += offset_range.step
    scope.glitch.width += width_range.step
f.close()
traces = np.asarray(traces)
# the rest of the data is available with the outputs, widths, and offsets lists
glitch_display.display_table()
print('Done')