As of August 2020 the site you are on (wiki.newae.com) is deprecated, and content is now at rtfm.newae.com.

Difference between revisions of "Making Scripts"

From ChipWhisperer Wiki
Jump to: navigation, search
(Added the example scripts and a description of each)
(Updated scripts and added stm32 scripts)
 
Line 7: Line 7:
 
This script is an example of using the <code>chipwhisperer</code> module for capturing traces during AES encryption. <b>Make sure to have the correct firmware loaded on the target.</b> These traces are then saved and loaded later for analysis.
 
This script is an example of using the <code>chipwhisperer</code> module for capturing traces during AES encryption. <b>Make sure to have the correct firmware loaded on the target.</b> These traces are then saved and loaded later for analysis.
  
 +
==== XMEGA Target ====
 
<syntaxhighlight lang=python>
 
<syntaxhighlight lang=python>
 
from __future__ import division, print_function
 
from __future__ import division, print_function
Line 39: Line 40:
  
 
# program the target
 
# program the target
xmega = XMEGAProgrammer()
+
programmer = XMEGAProgrammer()
xmega.setUSBInterface(scope.scopetype.dev.xmega)
+
programmer.scope = scope
xmega._logging = None
+
programmer._logging = None
xmega.find()
+
programmer.find()
xmega.erase()
+
programmer.erase()
glitch_simple_firmware_dir = os.path.join(FIRMWARE_DIR, 'simpleserial-aes')
+
aes_firmware_dir = os.path.join(FIRMWARE_DIR, 'simpleserial-aes')
glitch_simple_hex = os.path.join(glitch_simple_firmware_dir, r"simpleserial-aes-CW303.hex")
+
aes_hex = os.path.join(aes_firmware_dir, r"simpleserial-aes-CW303.hex")
xmega.program(glitch_simple_hex, memtype="flash", verify=True)
+
programmer.program(aes_hex, memtype="flash", verify=True)
xmega.close()
+
programmer.close()
  
 
ktp = AcqKeyTextPattern_Basic(target=target)
 
ktp = AcqKeyTextPattern_Basic(target=target)
Line 55: Line 56:
 
keys = []
 
keys = []
 
N = 50  # Number of traces
 
N = 50  # Number of traces
 +
target.init()
 +
for i in tqdm(range(N), desc='Capturing traces'):
 +
    # run aux stuff that should come before trace here
 +
 +
    key, text = ktp.newPair()  # manual creation of a key, text pair can be substituted here
 +
    textin.append(text)
 +
    keys.append(key)
 +
 +
    target.reinit()
 +
 +
    target.setModeEncrypt()  # only does something for targets that support it
 +
    target.loadEncryptionKey(key)
 +
    target.loadInput(text)
 +
 +
    # run aux stuff that should run before the scope arms here
 +
 +
    scope.arm()
 +
 +
    # run aux stuff that should run after the scope arms here
 +
 +
    target.go()
 +
    timeout = 50
 +
    # wait for target to finish
 +
    while target.isDone() is False and timeout:
 +
        timeout -= 1
 +
        time.sleep(0.01)
 +
 +
    try:
 +
        ret = scope.capture()
 +
        if ret:
 +
            print('Timeout happened during acquisition')
 +
    except IOError as e:
 +
        print('IOError: %s' % str(e))
 +
 +
    # run aux stuff that should happen after trace here
 +
    _ = target.readOutput()  # clears the response from the serial port
 +
    traces.append(scope.getLastTrace())
 +
trace_array = np.asarray(traces)  # if you prefer to work with numpy array for number crunching
 +
textin_array = np.asarray(textin)
 +
known_keys = np.asarray(keys)  # for fixed key, these keys are all the same
 +
 +
now = datetime.now()
 +
fmt_string = '{:02}{:02}_{}.npy'
 +
trace_file_path = fmt_string.format(now.hour, now.minute, "traces")
 +
textin_file_path = fmt_string.format(now.hour, now.minute, "textins")
 +
keys_file_path = fmt_string.format(now.hour, now.minute, "keys")
 +
 +
print('Saving results to {},{} and {}...'.format(trace_file_path, textin_file_path, keys_file_path), end='')
 +
# save to a files for later processing
 +
np.save(trace_file_path, trace_array)
 +
np.save(textin_file_path, textin_array)
 +
np.save(keys_file_path, known_keys)
 +
print('Done')
 +
 +
# uncomment plt.show() to show an example trace
 +
plt.plot(traces[0])
 +
#plt.show()
 +
 +
# cleanup the connection to the target and scope
 +
scope.dis()
 +
target.dis()
 +
</syntaxhighlight>
 +
 +
==== STM32F3 Target ====
 +
<syntaxhighlight lang=python>
 +
from __future__ import division, print_function
 +
 +
import time
 +
import os
 +
 +
import numpy as np
 +
import matplotlib.pyplot as plt
 +
from datetime import datetime
 +
from tqdm import tqdm
 +
 +
import chipwhisperer as cw
 +
from chipwhisperer.capture.acq_patterns.basic import AcqKeyTextPattern_Basic
 +
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
 +
from chipwhisperer.capture.api.programmers import STM32FProgrammer
 +
 +
scope = cw.scope()
 +
target = cw.target(scope)
 +
 +
# setup scope parameters
 +
scope.gain.gain = 45
 +
scope.adc.samples = 5000
 +
scope.adc.offset = 0
 +
scope.adc.basic_mode = "rising_edge"
 +
scope.clock.clkgen_freq = 7370000
 +
scope.clock.adc_src = "clkgen_x4"
 +
scope.trigger.triggers = "tio4"
 +
scope.io.tio1 = "serial_rx"
 +
scope.io.tio2 = "serial_tx"
 +
scope.io.hs2 = "clkgen"
 +
 +
# program the target
 +
programmer = STM32FProgrammer()
 +
programmer.scope = scope
 +
programmer._logging = None
 +
programmer.open()
 +
programmer.find()
 +
programmer.erase()
 +
aes_firmware_dir = os.path.join(FIRMWARE_DIR, 'simpleserial-aes')
 +
aes_hex = os.path.join(aes_firmware_dir, r"simpleserial-aes-CW308_STM32F3.hex")
 +
programmer.program(aes_hex, memtype="flash", verify=True)
 +
programmer.close()
 +
 +
ktp = AcqKeyTextPattern_Basic(target=target)
 +
 +
traces = []
 +
textin = []
 +
keys = []
 +
N = 50  # Number of traces
 +
target.init()
 
for i in tqdm(range(N), desc='Capturing traces'):
 
for i in tqdm(range(N), desc='Capturing traces'):
 
     # run aux stuff that should come before trace here
 
     # run aux stuff that should come before trace here
Line 90: Line 205:
 
     # run aux stuff that should happen after trace here
 
     # run aux stuff that should happen after trace here
  
 +
    _ = target.readOutput() # throw out the target response
 
     traces.append(scope.getLastTrace())
 
     traces.append(scope.getLastTrace())
 
trace_array = np.asarray(traces)  # if you prefer to work with numpy array for number crunching
 
trace_array = np.asarray(traces)  # if you prefer to work with numpy array for number crunching
Line 210: Line 326:
  
 
=== Exploring glitches ===
 
=== Exploring glitches ===
This script shows an example of using the ChipWhisperer tool for performing glitch attacks on a target executing code. This script has similar functionality of the glitch explorer in the GUI but exposes more the insides of the ChipWhisperer tool. This script varies the offset and the width percentage of the glitch applied to the target during code execution. More details about glitching can be found in [[Tutorial_A2_Introduction_to_Glitch_Attacks_(including_Glitch_Explorer) | Tutorial A2]]
+
This script shows an example of using the ChipWhisperer tool for performing clock glitch attacks on a target executing code. This script has similar functionality of the glitch explorer in the GUI but exposes more the insides of the ChipWhisperer tool. This script varies the offset and the width percentage of the clock glitch applied to the target during code execution. More details about clock glitching can be found in [[Tutorial_A2_Introduction_to_Glitch_Attacks_(including_Glitch_Explorer) | Tutorial A2]]
  
 +
==== XMEGA Target ====
 
<syntaxhighlight lang=python>
 
<syntaxhighlight lang=python>
 
from __future__ import print_function, division
 
from __future__ import print_function, division
Line 219: Line 336:
 
import os
 
import os
 
from collections import namedtuple
 
from collections import namedtuple
 +
import csv
  
 
import numpy as np
 
import numpy as np
Line 225: Line 343:
 
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
 
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
 
from chipwhisperer.capture.api.programmers import XMEGAProgrammer
 
from chipwhisperer.capture.api.programmers import XMEGAProgrammer
from scripting_utils import GlitchResultsDisplay
+
#from scripting_utils import GlitchResultsDisplay
  
 
logging.basicConfig(level=logging.WARN)
 
logging.basicConfig(level=logging.WARN)
 
scope = cw.scope()
 
scope = cw.scope()
 
target = cw.target(scope)
 
target = cw.target(scope)
 
# program the XMEGA with the built hex file
 
xmega = XMEGAProgrammer()
 
xmega.setUSBInterface(scope.scopetype.dev.xmega)
 
xmega._logging = None
 
xmega.find()
 
xmega.erase()
 
glitch_simple_firmware_dir = os.path.join(FIRMWARE_DIR, 'glitch-simple')
 
glitch_simple_hex = os.path.join(glitch_simple_firmware_dir, r"glitchsimple-CW303.hex")
 
xmega.program(glitch_simple_hex, memtype="flash", verify=True)
 
xmega.close()
 
  
 
# setup parameters needed for glitch the XMEGA
 
# setup parameters needed for glitch the XMEGA
Line 258: Line 365:
 
target.go_cmd = ""
 
target.go_cmd = ""
 
target.key_cmd = ""
 
target.key_cmd = ""
 +
 +
# program the XMEGA with the built hex file
 +
programmer = XMEGAProgrammer()
 +
programmer.scope = scope
 +
programmer._logging = None
 +
programmer.find()
 +
programmer.erase()
 +
glitch_simple_firmware_dir = os.path.join(FIRMWARE_DIR, 'glitch-simple')
 +
glitch_simple_hex = os.path.join(glitch_simple_firmware_dir, r"glitchsimple-CW303.hex")
 +
programmer.program(glitch_simple_hex, memtype="flash", verify=True)
 +
programmer.close()
  
 
# format output table
 
# format output table
 
headers = ['target output', 'width', 'offset', 'success']
 
headers = ['target output', 'width', 'offset', 'success']
glitch_display = GlitchResultsDisplay(headers)
+
#glitch_display = GlitchResultsDisplay(headers)
  
 
# set glitch parameters
 
# set glitch parameters
Line 280: Line 398:
 
# glitch cycle
 
# glitch cycle
 
scope.glitch.width = width_range.min
 
scope.glitch.width = width_range.min
 +
open('glitch_out.csv', 'w').close()
 +
f = open('glitch_out.csv', 'ab')
 +
writer = csv.writer(f)
 +
target.init()
 
while scope.glitch.width < width_range.max:
 
while scope.glitch.width < width_range.max:
 
     scope.glitch.offset = offset_range.min
 
     scope.glitch.offset = offset_range.min
Line 285: Line 407:
 
         # call before trace things here
 
         # call before trace things here
  
         # resets the target for the next glitch cycle
+
         # flush the garbage from the computer's target read buffer
         # similar to Check Signature button in GUI
+
         target.ser.flush()
        xmega.find()
+
        xmega.close()
+
  
         target.reinit()
+
         # target enters reset mode
         # call target functions here, setModeEncrypt...
+
         scope.io.pdic = 'low'
  
 
         # run aux stuff that should run before the scope arms here
 
         # run aux stuff that should run before the scope arms here
Line 299: Line 419:
 
         # run aux stuff that should run after the scope arms here
 
         # run aux stuff that should run after the scope arms here
  
         target.go()
+
         # target exits reset mode
 +
        scope.io.pdic = 'high'
 +
 
 
         timeout = 50
 
         timeout = 50
 
         # wait for target to finish
 
         # wait for target to finish
Line 316: Line 438:
 
         trace = scope.getLastTrace()
 
         trace = scope.getLastTrace()
 
         # read from the targets buffer
 
         # read from the targets buffer
         output = target.ser.read(target.output_len * 2, timeout=1000)
+
         output = target.ser.read(32, timeout=10)
 
         traces.append(trace)
 
         traces.append(trace)
 
         outputs.append(output)
 
         outputs.append(output)
Line 324: Line 446:
 
         # for table display purposes
 
         # for table display purposes
 
         success = '1234' in repr(output) # check for glitch success (depends on targets active firmware)
 
         success = '1234' in repr(output) # check for glitch success (depends on targets active firmware)
         glitch_display.add_data([repr(output), scope.glitch.width, scope.glitch.offset, success])
+
         data = [repr(output), scope.glitch.width, scope.glitch.offset, success]
 +
        #glitch_display.add_data(data)
 +
        writer.writerow(data)
  
 
         # run aux stuff that should happen after trace here
 
         # run aux stuff that should happen after trace here
 
         scope.glitch.offset += offset_range.step
 
         scope.glitch.offset += offset_range.step
 
     scope.glitch.width += width_range.step
 
     scope.glitch.width += width_range.step
 +
f.close()
 +
traces = np.asarray(traces)
 +
# the rest of the data is available with the outputs, widths, and offsets lists
 +
#glitch_display.display_table()
 +
print('Done')
  
 +
# clean up the connection to the scope and target
 +
scope.dis()
 +
target.dis()
 +
</syntaxhighlight>
 +
 +
==== STM32F3 Target ====
 +
<syntaxhighlight lang=python>
 +
from __future__ import print_function, division
 +
 +
import time
 +
import logging
 +
import os
 +
from collections import namedtuple
 +
import csv
 +
 +
import numpy as np
 +
 +
import chipwhisperer as cw
 +
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
 +
from chipwhisperer.capture.api.programmers import STM32FProgrammer
 +
from scripting_utils import GlitchResultsDisplay
 +
 +
logging.basicConfig(level=logging.WARN)
 +
scope = cw.scope()
 +
target = cw.target(scope)
 +
 +
# setup parameters needed for glitch the stm32f
 +
scope.glitch.clk_src = 'clkgen'
 +
 +
scope.gain.gain = 45
 +
scope.adc.samples = 5000
 +
scope.adc.offset = 0
 +
scope.adc.basic_mode = "rising_edge"
 +
scope.clock.clkgen_freq = 7370000
 +
scope.clock.adc_src = "clkgen_x4"
 +
scope.trigger.triggers = "tio4"
 +
scope.io.tio1 = "serial_rx"
 +
scope.io.tio2 = "serial_tx"
 +
scope.io.hs2 = "glitch"
 +
 +
target.go_cmd = ""
 +
target.key_cmd = ""
 +
 +
# program the stm32f with the built hex file
 +
programmer = STM32FProgrammer()
 +
programmer.scope = scope
 +
programmer._logging = None
 +
programmer.open()
 +
programmer.find()
 +
programmer.erase()
 +
glitch_simple_firmware_dir = os.path.join(FIRMWARE_DIR, 'glitch-simple')
 +
glitch_simple_hex = os.path.join(glitch_simple_firmware_dir, r"glitchsimple-CW308_STM32F3.hex")
 +
programmer.program(glitch_simple_hex, memtype="flash", verify=True)
 +
programmer.close()
 +
 +
# format output table
 +
headers = ['target output', 'width', 'offset', 'success']
 +
glitch_display = GlitchResultsDisplay(headers)
 +
 +
# set glitch parameters
 +
# trigger glitches with external trigger
 +
scope.glitch.trigger_src = 'ext_single'
 +
scope.glitch.repeat = 105
 +
 +
traces = []
 +
outputs = []
 +
widths = []
 +
offsets = []
 +
 +
# named tuples to make it easier to change the scope of the test
 +
Range = namedtuple('Range', ['min', 'max', 'step'])
 +
width_range = Range(-40, 40, 0.39*5)
 +
offset_range = Range(-40, 40, 0.39*5)
 +
 +
# glitch cycle
 +
scope.glitch.width = width_range.min
 +
open('glitch_out.csv', 'w').close()
 +
f = open('glitch_out.csv', 'ab')
 +
writer = csv.writer(f)
 +
target.init()
 +
while scope.glitch.width < width_range.max:
 +
    scope.glitch.offset = offset_range.min
 +
    while scope.glitch.offset < offset_range.max:
 +
        # call before trace things here
 +
 +
        # flush the garbage from the computer's target read buffer
 +
        target.ser.flush()
 +
 +
        # run aux stuff that should run before the scope arms here
 +
 +
        # target enters reset state
 +
        scope.io.nrst = 'low'
 +
 +
        scope.arm()
 +
 +
        # run aux stuff that should run after the scope arms here
 +
 +
        # target exits reset state and starts execution
 +
        scope.io.nrst = 'high'
 +
 +
        timeout = 50
 +
        # wait for target to finish
 +
        while target.isDone() is False and timeout:
 +
            timeout -= 1
 +
            time.sleep(0.01)
 +
 +
        try:
 +
            ret = scope.capture()
 +
            if ret:
 +
                logging.warning('Timeout happened during acquisition')
 +
        except IOError as e:
 +
            logging.error('IOError: %s' % str(e))
 +
 +
        # get the results from the scope
 +
        trace = scope.getLastTrace()
 +
        # read from the targets buffer
 +
        output = target.ser.read(32, timeout=100)
 +
        traces.append(trace)
 +
        outputs.append(output)
 +
        widths.append(scope.glitch.width)
 +
        offsets.append(scope.glitch.width)
 +
 +
        # for table display purposes
 +
        success = '1234' in repr(output) # check for glitch success (depends on targets active firmware)
 +
        data = [repr(output), scope.glitch.width, scope.glitch.offset, success]
 +
        glitch_display.add_data(data)
 +
        writer.writerow(data)
 +
 +
        # run aux stuff that should happen after trace here
 +
        scope.glitch.offset += offset_range.step
 +
    scope.glitch.width += width_range.step
 +
f.close()
 
traces = np.asarray(traces)
 
traces = np.asarray(traces)
 
# the rest of the data is available with the outputs, widths, and offsets lists
 
# the rest of the data is available with the outputs, widths, and offsets lists
glitch_display.display()
+
glitch_display.display_table()
 
print('Done')
 
print('Done')
 
</syntaxhighlight>
 
</syntaxhighlight>

Latest revision as of 12:13, 10 April 2018

For the older V3.x tools, see V3:Making_Scripts

Scripting with ChipWhisperer as a python module

When used without the GUI, the 4.0 API removes much of the high level abstractions so you can have more control over the capture process. It also answers questions like--when I capture a trace in what order are things happening? The following example scripts will give you a starting point when scripting with the ChipWhisperer tool. All these examples on this page can be found in their home chipwhisperer/software/scripting-examples.

Perform Some Traces during AES encryption and get the results as Numpy array

This script is an example of using the chipwhisperer module for capturing traces during AES encryption. Make sure to have the correct firmware loaded on the target. These traces are then saved and loaded later for analysis.

XMEGA Target

from __future__ import division, print_function

import time
import os

import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from tqdm import tqdm

import chipwhisperer as cw
from chipwhisperer.capture.acq_patterns.basic import AcqKeyTextPattern_Basic
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
from chipwhisperer.capture.api.programmers import XMEGAProgrammer

scope = cw.scope()
target = cw.target(scope)

# setup scope parameters
scope.gain.gain = 45
scope.adc.samples = 3000
scope.adc.offset = 1250
scope.adc.basic_mode = "rising_edge"
scope.clock.clkgen_freq = 7370000
scope.clock.adc_src = "clkgen_x4"
scope.trigger.triggers = "tio4"
scope.io.tio1 = "serial_rx"
scope.io.tio2 = "serial_tx"
scope.io.hs2 = "clkgen"

# program the target
programmer = XMEGAProgrammer()
programmer.scope = scope
programmer._logging = None
programmer.find()
programmer.erase()
aes_firmware_dir = os.path.join(FIRMWARE_DIR, 'simpleserial-aes')
aes_hex = os.path.join(aes_firmware_dir, r"simpleserial-aes-CW303.hex")
programmer.program(aes_hex, memtype="flash", verify=True)
programmer.close()

ktp = AcqKeyTextPattern_Basic(target=target)

traces = []
textin = []
keys = []
N = 50  # Number of traces
target.init()
for i in tqdm(range(N), desc='Capturing traces'):
    # run aux stuff that should come before trace here

    key, text = ktp.newPair()  # manual creation of a key, text pair can be substituted here
    textin.append(text)
    keys.append(key)

    target.reinit()

    target.setModeEncrypt()  # only does something for targets that support it
    target.loadEncryptionKey(key)
    target.loadInput(text)

    # run aux stuff that should run before the scope arms here

    scope.arm()

    # run aux stuff that should run after the scope arms here

    target.go()
    timeout = 50
    # wait for target to finish
    while target.isDone() is False and timeout:
        timeout -= 1
        time.sleep(0.01)

    try:
        ret = scope.capture()
        if ret:
            print('Timeout happened during acquisition')
    except IOError as e:
        print('IOError: %s' % str(e))

    # run aux stuff that should happen after trace here
    _ = target.readOutput()  # clears the response from the serial port
    traces.append(scope.getLastTrace())
trace_array = np.asarray(traces)  # if you prefer to work with numpy array for number crunching
textin_array = np.asarray(textin)
known_keys = np.asarray(keys)  # for fixed key, these keys are all the same

now = datetime.now()
fmt_string = '{:02}{:02}_{}.npy'
trace_file_path = fmt_string.format(now.hour, now.minute, "traces")
textin_file_path = fmt_string.format(now.hour, now.minute, "textins")
keys_file_path = fmt_string.format(now.hour, now.minute, "keys")

print('Saving results to {},{} and {}...'.format(trace_file_path, textin_file_path, keys_file_path), end='')
# save to a files for later processing
np.save(trace_file_path, trace_array)
np.save(textin_file_path, textin_array)
np.save(keys_file_path, known_keys)
print('Done')

# uncomment plt.show() to show an example trace
plt.plot(traces[0])
#plt.show()

# cleanup the connection to the target and scope
scope.dis()
target.dis()

STM32F3 Target

from __future__ import division, print_function

import time
import os

import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from tqdm import tqdm

import chipwhisperer as cw
from chipwhisperer.capture.acq_patterns.basic import AcqKeyTextPattern_Basic
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
from chipwhisperer.capture.api.programmers import STM32FProgrammer

scope = cw.scope()
target = cw.target(scope)

# setup scope parameters
scope.gain.gain = 45
scope.adc.samples = 5000
scope.adc.offset = 0
scope.adc.basic_mode = "rising_edge"
scope.clock.clkgen_freq = 7370000
scope.clock.adc_src = "clkgen_x4"
scope.trigger.triggers = "tio4"
scope.io.tio1 = "serial_rx"
scope.io.tio2 = "serial_tx"
scope.io.hs2 = "clkgen"

# program the target
programmer = STM32FProgrammer()
programmer.scope = scope
programmer._logging = None
programmer.open()
programmer.find()
programmer.erase()
aes_firmware_dir = os.path.join(FIRMWARE_DIR, 'simpleserial-aes')
aes_hex = os.path.join(aes_firmware_dir, r"simpleserial-aes-CW308_STM32F3.hex")
programmer.program(aes_hex, memtype="flash", verify=True)
programmer.close()

ktp = AcqKeyTextPattern_Basic(target=target)

traces = []
textin = []
keys = []
N = 50  # Number of traces
target.init()
for i in tqdm(range(N), desc='Capturing traces'):
    # run aux stuff that should come before trace here

    key, text = ktp.newPair()  # manual creation of a key, text pair can be substituted here
    textin.append(text)
    keys.append(key)

    target.reinit()

    target.setModeEncrypt()  # only does something for targets that support it
    target.loadEncryptionKey(key)
    target.loadInput(text)

    # run aux stuff that should run before the scope arms here

    scope.arm()

    # run aux stuff that should run after the scope arms here

    target.go()
    timeout = 50
    # wait for target to finish
    while target.isDone() is False and timeout:
        timeout -= 1
        time.sleep(0.01)

    try:
        ret = scope.capture()
        if ret:
            print('Timeout happened during acquisition')
    except IOError as e:
        print('IOError: %s' % str(e))

    # run aux stuff that should happen after trace here

    _ = target.readOutput() # throw out the target response
    traces.append(scope.getLastTrace())
trace_array = np.asarray(traces)  # if you prefer to work with numpy array for number crunching
textin_array = np.asarray(textin)
known_keys = np.asarray(keys)  # for fixed key, these keys are all the same

now = datetime.now()
fmt_string = '{:02}{:02}_{}.npy'
trace_file_path = fmt_string.format(now.hour, now.minute, "traces")
textin_file_path = fmt_string.format(now.hour, now.minute, "textins")
keys_file_path = fmt_string.format(now.hour, now.minute, "keys")

print('Saving results to {},{} and {}...'.format(trace_file_path, textin_file_path, keys_file_path), end='')
# save to a files for later processing
np.save(trace_file_path, trace_array)
np.save(textin_file_path, textin_array)
np.save(keys_file_path, known_keys)
print('Done')

# show an example trace
plt.plot(traces[0])
plt.show()

# cleanup the connection to the target and scope
scope.dis()
target.dis()

Manually breaking AES encryption with your recorded traces (As much as scripting is manual)

Using the saved traces of the AES encryption you can now break the sub-keys of the encryption key. This script is covered in more detail in Tutorial B6.

from __future__ import division, print_function

import numpy as np
from tqdm import tqdm

HW = [bin(n).count("1") for n in range(0, 256)]

sbox = (
    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16)


def intermediate(pt, keyguess):
    return sbox[pt ^ keyguess]

# put the actual file names in here
keys = np.load('1147_keys.npy')
textins = np.load('1147_textins.npy')
traces = np.load('1147_traces.npy')

knownkey = keys[0] # for fixed key they are all the same
pt = textins
numtraces = np.shape(traces)[0]
numpoint = np.shape(traces)[1]

bestguess = [0] * 16
pge = [256] * 16
for bnum in tqdm(range(0, 16), desc='Attacking subkeys'):
    cpaoutput = [0] * 256
    maxcpa = [0] * 256
    for kguess in range(0, 256):

        # Initialize arrays &amp; variables to zero
        sumnum = np.zeros(numpoint)
        sumden1 = np.zeros(numpoint)
        sumden2 = np.zeros(numpoint)

        hyp = np.zeros(numtraces)
        for tnum in range(0, numtraces):
            hyp[tnum] = HW[intermediate(pt[tnum][bnum], kguess)]

        # Mean of hypothesis
        meanh = np.mean(hyp, dtype=np.float64)

        # Mean of all points in trace
        meant = np.mean(traces, axis=0, dtype=np.float64)

        # For each trace, do the following
        for tnum in range(0, numtraces):
            hdiff = (hyp[tnum] - meanh)
            tdiff = traces[tnum, :] - meant

            sumnum = sumnum + (hdiff * tdiff)
            sumden1 = sumden1 + hdiff * hdiff
            sumden2 = sumden2 + tdiff * tdiff

        cpaoutput[kguess] = sumnum / np.sqrt(sumden1 * sumden2)
        maxcpa[kguess] = max(abs(cpaoutput[kguess]))

    bestguess[bnum] = np.argmax(maxcpa)

    cparefs = np.argsort(maxcpa)[::-1]

    # Find PGE
    pge[bnum] = list(cparefs).index(knownkey[bnum])

print("Best Key Guess: ", end="")
for b in bestguess: print("%02x " % b, end="")

print("")
print("PGE: ", end="")
for b in pge: print("%02d " % b, end="")

Exploring glitches

This script shows an example of using the ChipWhisperer tool for performing clock glitch attacks on a target executing code. This script has similar functionality of the glitch explorer in the GUI but exposes more the insides of the ChipWhisperer tool. This script varies the offset and the width percentage of the clock glitch applied to the target during code execution. More details about clock glitching can be found in Tutorial A2

XMEGA Target

from __future__ import print_function, division

import time
import logging
import os
from collections import namedtuple
import csv

import numpy as np

import chipwhisperer as cw
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
from chipwhisperer.capture.api.programmers import XMEGAProgrammer
#from scripting_utils import GlitchResultsDisplay

logging.basicConfig(level=logging.WARN)
scope = cw.scope()
target = cw.target(scope)

# setup parameters needed for glitch the XMEGA
scope.glitch.clk_src = 'clkgen'

scope.gain.gain = 45
scope.adc.samples = 3000
scope.adc.offset = 0
scope.adc.basic_mode = "rising_edge"
scope.clock.clkgen_freq = 7370000
scope.clock.adc_src = "clkgen_x4"
scope.trigger.triggers = "tio4"
scope.io.tio1 = "serial_rx"
scope.io.tio2 = "serial_tx"
scope.io.hs2 = "glitch"

target.go_cmd = ""
target.key_cmd = ""

# program the XMEGA with the built hex file
programmer = XMEGAProgrammer()
programmer.scope = scope
programmer._logging = None
programmer.find()
programmer.erase()
glitch_simple_firmware_dir = os.path.join(FIRMWARE_DIR, 'glitch-simple')
glitch_simple_hex = os.path.join(glitch_simple_firmware_dir, r"glitchsimple-CW303.hex")
programmer.program(glitch_simple_hex, memtype="flash", verify=True)
programmer.close()

# format output table
headers = ['target output', 'width', 'offset', 'success']
#glitch_display = GlitchResultsDisplay(headers)

# set glitch parameters
# trigger glitches with external trigger
scope.glitch.trigger_src = 'ext_single'
scope.glitch.repeat = 105

traces = []
outputs = []
widths = []
offsets = []

# named tuples to make it easier to change the scope of the test
Range = namedtuple('Range', ['min', 'max', 'step'])
width_range = Range(-10, 10, 4)
offset_range = Range(-10, 10, 4)

# glitch cycle
scope.glitch.width = width_range.min
open('glitch_out.csv', 'w').close()
f = open('glitch_out.csv', 'ab')
writer = csv.writer(f)
target.init()
while scope.glitch.width < width_range.max:
    scope.glitch.offset = offset_range.min
    while scope.glitch.offset < offset_range.max:
        # call before trace things here

        # flush the garbage from the computer's target read buffer
        target.ser.flush()

        # target enters reset mode
        scope.io.pdic = 'low'

        # run aux stuff that should run before the scope arms here

        scope.arm()

        # run aux stuff that should run after the scope arms here

        # target exits reset mode
        scope.io.pdic = 'high'

        timeout = 50
        # wait for target to finish
        while target.isDone() is False and timeout:
            timeout -= 1
            time.sleep(0.01)

        try:
            ret = scope.capture()
            if ret:
                logging.warning('Timeout happened during acquisition')
        except IOError as e:
            logging.error('IOError: %s' % str(e))

        # get the results from the scope
        trace = scope.getLastTrace()
        # read from the targets buffer
        output = target.ser.read(32, timeout=10)
        traces.append(trace)
        outputs.append(output)
        widths.append(scope.glitch.width)
        offsets.append(scope.glitch.width)

        # for table display purposes
        success = '1234' in repr(output) # check for glitch success (depends on targets active firmware)
        data = [repr(output), scope.glitch.width, scope.glitch.offset, success]
        #glitch_display.add_data(data)
        writer.writerow(data)

        # run aux stuff that should happen after trace here
        scope.glitch.offset += offset_range.step
    scope.glitch.width += width_range.step
f.close()
traces = np.asarray(traces)
# the rest of the data is available with the outputs, widths, and offsets lists
#glitch_display.display_table()
print('Done')

# clean up the connection to the scope and target
scope.dis()
target.dis()

STM32F3 Target

from __future__ import print_function, division

import time
import logging
import os
from collections import namedtuple
import csv

import numpy as np

import chipwhisperer as cw
from chipwhisperer.tests.tools_for_tests import FIRMWARE_DIR
from chipwhisperer.capture.api.programmers import STM32FProgrammer
from scripting_utils import GlitchResultsDisplay

logging.basicConfig(level=logging.WARN)
scope = cw.scope()
target = cw.target(scope)

# setup parameters needed for glitch the stm32f
scope.glitch.clk_src = 'clkgen'

scope.gain.gain = 45
scope.adc.samples = 5000
scope.adc.offset = 0
scope.adc.basic_mode = "rising_edge"
scope.clock.clkgen_freq = 7370000
scope.clock.adc_src = "clkgen_x4"
scope.trigger.triggers = "tio4"
scope.io.tio1 = "serial_rx"
scope.io.tio2 = "serial_tx"
scope.io.hs2 = "glitch"

target.go_cmd = ""
target.key_cmd = ""

# program the stm32f with the built hex file
programmer = STM32FProgrammer()
programmer.scope = scope
programmer._logging = None
programmer.open()
programmer.find()
programmer.erase()
glitch_simple_firmware_dir = os.path.join(FIRMWARE_DIR, 'glitch-simple')
glitch_simple_hex = os.path.join(glitch_simple_firmware_dir, r"glitchsimple-CW308_STM32F3.hex")
programmer.program(glitch_simple_hex, memtype="flash", verify=True)
programmer.close()

# format output table
headers = ['target output', 'width', 'offset', 'success']
glitch_display = GlitchResultsDisplay(headers)

# set glitch parameters
# trigger glitches with external trigger
scope.glitch.trigger_src = 'ext_single'
scope.glitch.repeat = 105

traces = []
outputs = []
widths = []
offsets = []

# named tuples to make it easier to change the scope of the test
Range = namedtuple('Range', ['min', 'max', 'step'])
width_range = Range(-40, 40, 0.39*5)
offset_range = Range(-40, 40, 0.39*5)

# glitch cycle
scope.glitch.width = width_range.min
open('glitch_out.csv', 'w').close()
f = open('glitch_out.csv', 'ab')
writer = csv.writer(f)
target.init()
while scope.glitch.width < width_range.max:
    scope.glitch.offset = offset_range.min
    while scope.glitch.offset < offset_range.max:
        # call before trace things here

        # flush the garbage from the computer's target read buffer
        target.ser.flush()

        # run aux stuff that should run before the scope arms here

        # target enters reset state
        scope.io.nrst = 'low'

        scope.arm()

        # run aux stuff that should run after the scope arms here

        # target exits reset state and starts execution
        scope.io.nrst = 'high'

        timeout = 50
        # wait for target to finish
        while target.isDone() is False and timeout:
            timeout -= 1
            time.sleep(0.01)

        try:
            ret = scope.capture()
            if ret:
                logging.warning('Timeout happened during acquisition')
        except IOError as e:
            logging.error('IOError: %s' % str(e))

        # get the results from the scope
        trace = scope.getLastTrace()
        # read from the targets buffer
        output = target.ser.read(32, timeout=100)
        traces.append(trace)
        outputs.append(output)
        widths.append(scope.glitch.width)
        offsets.append(scope.glitch.width)

        # for table display purposes
        success = '1234' in repr(output) # check for glitch success (depends on targets active firmware)
        data = [repr(output), scope.glitch.width, scope.glitch.offset, success]
        glitch_display.add_data(data)
        writer.writerow(data)

        # run aux stuff that should happen after trace here
        scope.glitch.offset += offset_range.step
    scope.glitch.width += width_range.step
f.close()
traces = np.asarray(traces)
# the rest of the data is available with the outputs, widths, and offsets lists
glitch_display.display_table()
print('Done')